Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.

Identifieur interne : 000868 ( Main/Exploration ); précédent : 000867; suivant : 000869

A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.

Auteurs : Kelly Botero [Colombie] ; Silvia Restrepo [Colombie] ; Andres Pinz N [Colombie]

Source :

RBID : pubmed:30537923

Descripteurs français

English descriptors

Abstract

BACKGROUND

Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown.

RESULTS

To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum.

CONCLUSIONS

In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.


DOI: 10.1186/s12864-018-5192-x
PubMed: 30537923
PubMed Central: PMC6288859


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.</title>
<author>
<name sortKey="Botero, Kelly" sort="Botero, Kelly" uniqKey="Botero K" first="Kelly" last="Botero">Kelly Botero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá</wicri:regionArea>
<wicri:noRegion>Bogotá</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Bioinformática y Biología Computacional, Manizales, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Centro de Bioinformática y Biología Computacional, Manizales</wicri:regionArea>
<wicri:noRegion>Manizales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Restrepo, Silvia" sort="Restrepo, Silvia" uniqKey="Restrepo S" first="Silvia" last="Restrepo">Silvia Restrepo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá</wicri:regionArea>
<wicri:noRegion>Bogotá</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinz N, Andres" sort="Pinz N, Andres" uniqKey="Pinz N A" first="Andres" last="Pinz N">Andres Pinz N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia. ampinzon@unal.edu.co.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá</wicri:regionArea>
<wicri:noRegion>Bogotá</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30537923</idno>
<idno type="pmid">30537923</idno>
<idno type="doi">10.1186/s12864-018-5192-x</idno>
<idno type="pmc">PMC6288859</idno>
<idno type="wicri:Area/Main/Corpus">000595</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000595</idno>
<idno type="wicri:Area/Main/Curation">000595</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000595</idno>
<idno type="wicri:Area/Main/Exploration">000595</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.</title>
<author>
<name sortKey="Botero, Kelly" sort="Botero, Kelly" uniqKey="Botero K" first="Kelly" last="Botero">Kelly Botero</name>
<affiliation wicri:level="1">
<nlm:affiliation>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá</wicri:regionArea>
<wicri:noRegion>Bogotá</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Centro de Bioinformática y Biología Computacional, Manizales, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Centro de Bioinformática y Biología Computacional, Manizales</wicri:regionArea>
<wicri:noRegion>Manizales</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Restrepo, Silvia" sort="Restrepo, Silvia" uniqKey="Restrepo S" first="Silvia" last="Restrepo">Silvia Restrepo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá</wicri:regionArea>
<wicri:noRegion>Bogotá</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pinz N, Andres" sort="Pinz N, Andres" uniqKey="Pinz N A" first="Andres" last="Pinz N">Andres Pinz N</name>
<affiliation wicri:level="1">
<nlm:affiliation>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia. ampinzon@unal.edu.co.</nlm:affiliation>
<country xml:lang="fr">Colombie</country>
<wicri:regionArea>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá</wicri:regionArea>
<wicri:noRegion>Bogotá</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Genome, Plant (MeSH)</term>
<term>Host-Parasite Interactions (MeSH)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Photosynthesis (MeSH)</term>
<term>Phytophthora infestans (physiology)</term>
<term>Plant Diseases (parasitology)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (parasitology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (parasitology)</term>
<term>Solanum tuberosum (physiology)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (parasitologie)</term>
<term>Génome végétal (MeSH)</term>
<term>Interactions hôte-parasite (MeSH)</term>
<term>Maladies des plantes (parasitologie)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Phytophthora infestans (physiologie)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (parasitologie)</term>
<term>Solanum tuberosum (physiologie)</term>
<term>Transcriptome (MeSH)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Leaves</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Maladies des plantes</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="parasitology" xml:lang="en">
<term>Plant Diseases</term>
<term>Plant Leaves</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora infestans</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora infestans</term>
<term>Solanum tuberosum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genome, Plant</term>
<term>Host-Parasite Interactions</term>
<term>Metabolic Networks and Pathways</term>
<term>Models, Biological</term>
<term>Photosynthesis</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Génome végétal</term>
<term>Interactions hôte-parasite</term>
<term>Modèles biologiques</term>
<term>Photosynthèse</term>
<term>Transcriptome</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30537923</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>Suppl 8</Issue>
<PubDate>
<Year>2018</Year>
<Month>Dec</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.</ArticleTitle>
<Pagination>
<MedlinePgn>863</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12864-018-5192-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Phytophthora infestans is a plant pathogen that causes an important plant disease known as late blight in potato plants (Solanum tuberosum) and several other solanaceous hosts. This disease is the main factor affecting potato crop production worldwide. In spite of the importance of the disease, the molecular mechanisms underlying the compatibility between the pathogen and its hosts are still unknown.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">To explain the metabolic response of late blight, specifically photosynthesis inhibition in infected plants, we reconstructed a genome-scale metabolic network of the S. tuberosum leaf, PstM1. This metabolic network simulates the effect of this disease in the leaf metabolism. PstM1 accounts for 2751 genes, 1113 metabolic functions, 1773 gene-protein-reaction associations and 1938 metabolites involved in 2072 reactions. The optimization of the model for biomass synthesis maximization in three infection time points suggested a suppression of the photosynthetic capacity related to the decrease of metabolic flux in light reactions and carbon fixation reactions. In addition, a variation pattern in the flux of carboxylation to oxygenation reactions catalyzed by RuBisCO was also identified, likely to be associated to a defense response in the compatible interaction between P. infestans and S. tuberosum.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In this work, we introduced simultaneously the first metabolic network of S. tuberosum and the first genome-scale metabolic model of the compatible interaction of a plant with P. infestans.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Botero</LastName>
<ForeName>Kelly</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Centro de Bioinformática y Biología Computacional, Manizales, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Restrepo</LastName>
<ForeName>Silvia</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Laboratorio de Micología y Fitopatología, Universidad de los Andes, Bogotá, Colombia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pinzón</LastName>
<ForeName>Andres</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Grupo de Bioinformática y Biología de Sistemas, Universidad Nacional del Colombia - Instituto de Genética, Calle 53- Carrera 32, Edificio 426, Bogotá, Colombia. ampinzon@unal.edu.co.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006790" MajorTopicYN="N">Host-Parasite Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="Y">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000469" MajorTopicYN="Y">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000469" MajorTopicYN="N">parasitology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Compatible interaction</Keyword>
<Keyword MajorTopicYN="N">Flux balance analysis</Keyword>
<Keyword MajorTopicYN="N">Metabolic reconstruction</Keyword>
<Keyword MajorTopicYN="N">Phytophthora infestans</Keyword>
<Keyword MajorTopicYN="N">Solanum tuberosum</Keyword>
<Keyword MajorTopicYN="N">Systems biology</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>2</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30537923</ArticleId>
<ArticleId IdType="doi">10.1186/s12864-018-5192-x</ArticleId>
<ArticleId IdType="pii">10.1186/s12864-018-5192-x</ArticleId>
<ArticleId IdType="pmc">PMC6288859</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 1989 May;90(1):109-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2002;40:137-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12147757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jan;149(1):585-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18987214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2018 Jan 9;8(1):216</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29317679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Sep;23(6):795-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10998190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1570-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2007;54(1):39-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17325747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):14165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10570216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19888215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D471-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26527732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Biol Med Model. 2009 Nov 12;6:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19909526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):13454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11606758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1871-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20974891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2013 May 25;521(1):1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23537990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stud Hist Philos Biol Biomed Sci. 2015 Feb;49:1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25462871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2008 Aug;95(3):1487-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18645197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Dec;94(4):1728-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Jan;57(2):230-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801014</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Apr;25(4):1197-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23613196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 May 09;9(5):e97197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24816730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2013 Nov 13;7:125</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24224957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2013 Aug 08;7:74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23927696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Feb 10;5:17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24575102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8849-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10922045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1995;33:299-321</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18999963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2005 Mar 07;5:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15752426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Oct 29;355(1402):1517-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:373-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2005;43:205-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16078883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1960 Mar;35(2):188-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16655327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 14;411(6839):826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Apr;155(4):1566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2012 Feb;23(1):77-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22119273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1954 Aug 28;174(4426):394-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13194001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1878-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18263778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2010;8:e0130</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2011 Aug 04;6(9):1290-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21886097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21784</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21755001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Jul 10;475(7355):189-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21743474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D770-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064852</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2009 May;22(5):487-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19348567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):579-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20044452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Aug;67(3):526-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21501263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010 Aug 16;4:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20712863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2013 May 28;2:e00731</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23741619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 9;110(3):273-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12176312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jan;8(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12523995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2016 Jan;85(2):289-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26576489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Jun 19;15:497</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24947944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Nov;166(3):1659-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25248718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(3):e1002980</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23555215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2006;44:41-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16448329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2011 Jul;108(7):1673-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21337341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Sep;75(6):1050-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23738527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31526</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22328937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2015 Aug;34:105-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25562137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Mar;63(6):2247-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2000 Sep;38:541-576</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11701854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Dec;16(12):3304-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15548738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):838-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4019-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18182420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 3;109(1):339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22184215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 May 28;5:228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24904623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2687-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acc Chem Res. 2003 Oct;36(10):798-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14567714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2010 Jan;5(1):93-121</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20057383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 May 23;14:340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Jun;162(2):1060-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23640755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Colombie</li>
</country>
</list>
<tree>
<country name="Colombie">
<noRegion>
<name sortKey="Botero, Kelly" sort="Botero, Kelly" uniqKey="Botero K" first="Kelly" last="Botero">Kelly Botero</name>
</noRegion>
<name sortKey="Botero, Kelly" sort="Botero, Kelly" uniqKey="Botero K" first="Kelly" last="Botero">Kelly Botero</name>
<name sortKey="Pinz N, Andres" sort="Pinz N, Andres" uniqKey="Pinz N A" first="Andres" last="Pinz N">Andres Pinz N</name>
<name sortKey="Restrepo, Silvia" sort="Restrepo, Silvia" uniqKey="Restrepo S" first="Silvia" last="Restrepo">Silvia Restrepo</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000868 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000868 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30537923
   |texte=   A genome-scale metabolic model of potato late blight suggests a photosynthesis suppression mechanism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30537923" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024